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SPATIALLY MODULATED CONVECTIVE MOTIONS IN 
VERTICAL LAYER WITH CURVED BOUNDARIES* 

A.A. NEPOMNYASHCHII 

A 

Mixed convection modes in a vertical layer with periodically curved 

boundaries are investigated. The amplitude of the waviness of the layer 

walls and the flow of fluid along the layer are both assumed to be small, 

and the value of the Grashof number is assumed to be close to critical. 

It is established that, in addition to the spatially periodic motions 

where the amplitude of the waviness is small, studied in /l, 2/, stable 

spatially modulated (quasiperiodic and soliton-type) wave modes of flow 

are possible, resembling the modulated convective structuresinahorizontal 

layer /3/. 

1. The problem was formulated earlier in /l, 2/. Confining ourselves belowtothe region 

G> G, (G = gflf3d5/vp is the Grashof number and G, is the critical Grashof number), we use the 

following transformations: 

JGs / JGI 
T=~tg, Yz\~ 

'I, 
yl 

A = (&)" a~exp (- iby,) 

(I.11 

to reduce Eq.(2.9) of /2/ describing the evolution of the envelope system of convective vorti- 

ces, to the following form (a subscript denotes differentiation with respect to the correspond- 

ing variable) : 

A~=Ayy+2iKdiy+(1-_K,*-io)A-_AllaA+6 U.2) 

Y-+m, lAf<co 

Here 

Bq DS'J' 
w=- J(G-Gc) ’ ‘= J% (G -qGcfiS 

(1.3) 

(q is the dimensionless flow of fluid, k,,ti is the wave number and amplitude of the waviness 

of the boundaries, k. is the critical wave number, and B, J,D,S,R are real constants defined 

in /2, 4/). 

A particular class of solutions of Eq.(1.2) of the form A = Z(T). was studied in detail 

in /l, 2/. This type of solution corresponds, in accordance with the definition of the 

amplitude function, to spatially periodic motions with period 2sJk,, "imposed" bythewaviness 

of the boundaries. Below we shall discuss other types of stable motions without spatial 

periodicity for small values of the parameter 6. 

2. We shall seek solutions of problem (1.2) periodic inYand T, in the form of a series 

in powers of 6: 

n+1 

A=$” )J Ag)exp[fm(AY- QT+cpo)] (2.1) 
n=o Vl,=-*+I 

Q = 5 &$'O 
n-0 

choosing, as the zeroth approximation, 

A,(O) = (i - RI)%; Q(O) = 0; R = R. + A 

Let us substitute (2.1) into (1.2) and equate terms of like powers in 6. It can be shown 
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that when the condition K3<1/3 holds, the problem has a solution in all powers of 6 excepl~ 
in the resonant case A= w = 0. The quantities Am(") are non-zero only if m and n 
different parity, and the expansion for $2 contains only terms with even n. Note th::eth:P 

coefficients -4,(W) and Sr(") contain the factor IFnI, where 

H = 2(1 - 3K*) AZ + 2io (i - I?+ (A -i_ iw)* 

and therefore the small parameter over which the functions are expanded, is in fact 61~1-1. 

Solution (2.1) describes a travellinq wave with mean wave number kc+ KR-‘~~[(J(G_&)~‘/~, 

spatially modulated with period ZTCR’~~ [JA (G - CC)]-'/'. 

In order to investigate the stability, we shall impose on periodic solution A a small 
perturbation a whose evolution is described by the problem with periodic coefficients. The 
normal perturbations have the form of the Floquet functions 

d = aI (Y, T) exp (iQY $ hT) i- 0% (Y, T) exp (--iQY+ 1T) 

lZi (Y + ZJIA-', T) = "i (Y, T) 

"i (Y. T + ZXW') = ui (Y, T); i = 1, 2 

The most dangerous perturbations are those with small Q which transform, as Q-O, into 

corresponding to an infinitesimal change in the a neutral perturbation a, = a,=Ay, h= 0 

constant 'pO. For these perturbations 

Reh=sQe+...,s= -(1 - 3IP) (1 - KS)_' +- &@) + . . . (2.2) 
(the explicit expression for s@)(h.,Ko,o) is bulky and willnotbe given here). From expression 
(2.2) it follows that the solutions (2.1 ) are stable for small 6 when K_< K<K+, where 

3. As we said before, the ratio 611Hl serves as the small parameter in the expansions 

(2.1). In the resonant case 181-6, i.e. L\-$/*,o-~), the approach described in Sect.2 

becomes ineffective. In this case, however, we can use the fact that the amplitude of A is 
a slow function of the sp,atial coordinate and time. 

Confining ourselves to the case Ko2<V3 we obtain, as in /2/, the evolutionary equation 

for the phase Q, of the complex variable A: 

@T = QD,, - sin @ - F; X - -&co, 1 mD, I< CO (3.4) 

7 = 6T (1 - K02)-“l, p = 6-10 (i - K,2)‘!1 

X _ #lay (1 - K@Z)% (i - 3X,2)-'/' 

The solutions of the problem independent of the coordinate X correspond to the spatially 

periodic motions studied earlier in /l, 2/. Here we shall discuss new classes of flows 

described by solutions which depend on the X coordinate. 

Let us first consider the spatially modulated stationary flows. When 07=0, Eq.(3.1) 

will describe the motion of a pendulum acted upon by a constant moment of force (the X coor- 
dinate will serve as time), and its solutions will be written in terms of elliptic functions. 

In order to determine the stability of the modulated stationary motions, we must investi- 

gate the spectrum of the linearized problem for the perturbations q(X)expbr imposed on the 

solution @,, which represents the Sturm-Liouville problem (the Schradinger equation). It is 

well-known that the largest value of li corresponds to the function cp of constant sign. At 

the same time, the equation will always have the solution cp= @,,,h= 0. This implies that the 

stationary motion is stable if the function Q(X) is monotonic. When F=O, the soliton 

solutions 
@ = 4arctg e*= (3.2) 

are stable together with the solutions with @(X-i-L)= @(X)*22n, and solutions for which 

@(X+ L)= Q(X), are unstable. When F#O , all stationary solutions except 0= @+= --arosinF 

(IFI<i) are unstable. 
Let us turn our attention to the solutions 

@ = CD (&), 5 = x - c7 (3.3) 
which correspond to modulated travelling waves. We will write problem (3.1) in the form 

ODEE+ cU+--inO, - F= 0; E- +CO, 1 Ujj<~o (3.4) 

Eq.(3.4) describes the motion of a pendulum with friction, under the action of a 
constant moment of force /5/. A similar problem was studied in the course of investigating 
the properties of the soliton lattices in distributed Josephson junctions /6, 7/. The domains 

of existence of the various solutions are shown in the figure; the coordinates of the point 

M: F = 1, c = 1.19 /7/. Feriodic solutions of problem (3.4) exist in regions 1 and 2; for a 

given value of F the period increases monotonically as c increases. When F>i, theperiodic 
solutions (3.3) become, as C-*, 
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UJ = -2ArctS ((i + (P - if". 

.tg [Z(Fp - l)"I (T - zo)l)~l) 

independent of the X coordinate. If on the other hand F<l and the spatial period increases 
without limit, the phase velocity tends to some limit value. A soliton solution exists at 
the boundary separating regions 1 and 3, and it tends as E--+-&co to the limit values 

@(-co)= (D, -22x, a,(+=)= @+ (3.5) 

we note that near this boundary, the solutions with a finite but large period become 
similar to a periodic lattice of solitons. A soliton also exists, with the limit value of 
(3‘S), at the boundary between regions 2 and 3, but its asymptotic form at infinity is of a 
power type. Finally, a soliton solution exists in regions land 3 with the asymptotic form 

@(--cQ)= @+, CD (-i-m) = CD_ = arcsin F - n (3.6) 
and in region 3 we also have solitons with the asymptotic form 

@f-m)= a+ --22x, (D(fcQ)= a_ (3.7) 

The above types of solutions describe the "front" of the displacement of the unstable 
motion with Q, = CD_ by the stable motion with CD= CD,. 

The stability of solutions (3.3) in a reference system moving with the wave, is deter- 
mined by the spectrum of the boundary value problem 

ho = 'PEf + CcPt - COSQ, (E) cp v(3.8) 

5-zt?, I'pkI<p" 

When Q, are periodic, the functions "p have the form of Floquet functions. It is easy 
to establish the instability of the soliton solutions (3.6) and (3.7) related to the continu- 
ous spectrum. The stability of periodic solutions and solitons of the type (3.5) was estab- 
lished in /?/. 

Thus we find that in a layer with wavy boundaries and low-amplitude waviness, we can 
have, in addition to spatially periodic motions with a wavelength related to the curvature 
of the boundaries, quasiperiodic stable motions (modulated waves) whose spatial spectrum 
contains a discrete set of wave numbers. When the outer parameters of the problem are fixed, 

the motions of the given class constitute a one-parameter family. 
If IPl>i (the flow of fluid along the layer lgi‘ exceeds some 
critical value), then increasing the modulation period transforms 
them into thetravelling, spatially periodic waves studied earlier 
in /l, 2/. If on the other hand IF/<1 (the flow of fluid is less 
than critical), then increasing the modulation period transforms the 
quasiperiodic solutions into a soliton solution with a continuous 
spatial Fourier spectrum. The solution approaches the periodic sol- 
ution asymptotically at large distances, but contains a stable moving 
local defect at finite values of the spatial coordinate. 

REFERENCES 

1. LEVINA G.V. and NEPOMNYASHCHII A.A., On mixed convection modes in a vertical layer with 
unsteadily deformable boundaries. PMM, 47, 3, 1983. 

2. VOZOVOI L.P. and MEPOMNYASHCHII A-A., On the stability of mixed convective motion in a 
vertical layer with wavy boundaries. PMM, 48, 6, 1984. 

3. COULLETP., Commensurate-incommensurate transition in non-equilibrium systems, Phys. Rev. 
Letters. 56, 7, 1986. 

4. VOZOVOI L.P. and NEPOMNYASHCHII A.A., On the stability of spatially periodic convective 
flows in a vertical layer with wavy boundaries. PMM, 43, 6, 1979. 

5. ~RONOV A.A., VITT A.A. and KRAIKIN S.E., Theory of Oscillations. Nauka, Moscow, 1981. 
6. LIKHAREV K.K., Introduction to the Dynamics of Josephson Junctions. Nauka, Moscow, 1985. 
7. BURKOV S.E. and LIFSIC A.E., Stability of moving soliton lattices, Wave Motion. 5, 3, 1983. 

Translated by L.K. 


